A Semiparametric Marginalized Model for Longitudinal Data with Informative Dropout.

نویسندگان

  • Mengling Liu
  • Wenbin Lu
چکیده

We propose a marginalized joint-modeling approach for marginal inference on the association between longitudinal responses and covariates when longitudinal measurements are subject to informative dropouts. The proposed model is motivated by the idea of linking longitudinal responses and dropout times by latent variables while focusing on marginal inferences. We develop a simple inference procedure based on a series of estimating equations, and the resulting estimators are consistent and asymptotically normal with a sandwich-type covariance matrix ready to be estimated by the usual plug-in rule. The performance of our approach is evaluated through simulations and illustrated with a renal disease data application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.

The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient rand...

متن کامل

Joint Modeling of Longitudinal Data with Informative Observation times and Dropouts

In many longitudinal studies, the response process is correlated with observation times and dropout. We propose a joint modeling for analysis of longitudinal data with informative observation times and dropout. We specify a semiparametric linear regression model for the longitudinal process, and accelerated time models for the observation and the dropout processes, while leaving the distributio...

متن کامل

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time

Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean struct...

متن کامل

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of probability and statistics

دوره 2012 2012  شماره 

صفحات  -

تاریخ انتشار 2012